

A Possible Technology Path Towards an Exo-Earth Imaging and Characterization Mission

Dr. Nicholas Siegler

Program Chief Technologist, NASA Exoplanet Exploration Program

Dr. Brendan Crill

Deputy Technology Development Manager, NASA Exoplanet Exploration Program

Jet Propulsion Laboratory

California Institute of Technology

SPIE

Pre-Decisional Information -- For Planning and Discussion Purposes Only

San Diego

August 6, 2017

3502 Confirmed Exoplanets

... and counting

Discovery Year

The Evidence for Life on Exoplanets

Wavelength (µm)

Starlight Suppression is the Key Technology in the Search for Earth-Size Exoplanets and Life

External Occulter (Starshade)

Nulling Interferometry

Internal Occulter (Coronagraph)

NASA's **Exoplanet Missions**

JWST²

coronagraph

Kepler

Spitzer

Hubble¹

coronagraph

First high-contrast coronagraph baselined; starshade compatibility New Worlds under study

Telescope (mid-2030s)

WFIRST

(mid-2020s)

2020 Decadal Mission Concept Studies

- Origins Space Telescope (Far-IR)
- Habitable Exoplanet Imaging Mission
- Large UV/Optical/IR Surveyor
- Lynx (X-ray Surveyor)

Driving science is direct imaging of exo-Earths

TESS

(2018)

- ¹ NASA/ESA Partnership
- ² NASA/CNES/ESA Partnership

Technology development towards this possible future mission is already underway

Possible Technology Path to Imaging Exo-Earth

WFIRST Coronagraph

A key stepping stone

Angular Separation (arcsec)

WFIRST Coronagraph Tech Development

Achieved technology milestones to TRL 5

High-contrast coronagraph masks with a highly obscured pupil

Deformable mirrors

Integral field spectrograph + coronagraph

Low order wavefront sense / control

Ultra-low noise EMCCD for space

Compatibility with a starshade for possible rendezvous mission pending 2020 Decadal Survey

See the three WFIRST Coronagraph sessions: Tuesday 8:30 am, 10:40 am, 1:50 pm

Possible Technology Path to Imaging Exo-Earth

Segmented Coronagraph Design & Analysis (SCDA) Study

- ExEP-led study to evaluate coronagraph designs for a segmented/obscured telescope
 - Stuart Shaklan (JPL) is Study Lead, five teams
 - 12 m class on-axis telescopes with central obscurations
 - Finite star size
 - Compared to clear apertures
- APLC design so far most successful
 - APLC: Apodized Pupil Lyot Coronagraph is being developed at the STSCI (Soummer)
 - APLC robustness against design tolerances and segment phasing errors being evaluated
 - Vector Vortex being optimized for finite star size and on-axis secondary
 - PIAACMC considered for longer-wavelength use
 - VNC experiencing challenges; HLC ramping up

See the Segmented Aperture Coronagraphs Session Tues 3:40 pm

NASA TDEM Awards

- Annually competed awards solicited to meet NASA's priorities
- Active awards are advancing exoplanet direct-imaging technology and yields

Coronagraphy

- Vector Vortex (PI Serabyn/NASA-JPL)
- Visible Nulling Coronagraph (PI Hicks/NASA-GSFC)
- Astrometry (PI Bendek/NASA-Ames)
- Deformable mirrors (PI Bierden/BMC, PI Helmbrecht/Iris AO)
- Polarization (PI Breckenridge/UA)

Starshade

Re-directed to starshade technology activity

TDEM-10 Helmbrecht

TDEM-15 Breckinridge

TDEM-14 Serabyn

TDEM-10 Bierden

High-Contrast Imaging Testbed (HCIT)

Decadal Survey Testbed

Current best contrast demonstration with 10% band (Trauger (JPL)

Decadal Survey Testbed
Phase I: meet 10⁻¹⁰ contrast
with 10% band and a clear
aperture in 2018

Phase II: replace clear pupil with a segmented/obscured (static) aperture in 2019

Phase III: replace static aperture with a dynamic segmented/obscured telescope simulator in 2020

Possible Technology Path to Imaging Exo-Earth

Possible New Worlds Exoplanet Telescopes

LUVOIR Mission Concept

15m on-axis mirror (120 ~1.5m segments) space telescope using a coronagraph

Key Technologies:

- An ultra-stable opto-mechanical structure enabling 10 pm rms wavefront stability
 - isolation stages, laser metrology, capacitive edge sensors, thermal control
- Segmented-aperture coronagraphy at 10⁻¹⁰ contrast, ≥ 10% band
 - APLC design is the leading candidate work being done in coordination with SCDA
 - needs to be demonstrated in the lab
- Meter-class segmented mirrors with SFE < 5 nm rms
 - Glass or SiC, high-level of control authority?
- ultra-low noise near-infrared detectors

HabEx Mission Concept

 Off-axis 4 m monolith telescope primary equipped with both a starshade and a coronagraph for starlight suppression

Key technologies:

- 72 m diameter starshade
 - architecture goes beyond WFIRST rendezvous architecture
- 4 m glass monolith for space with < 1 nm stability
 - Largest monolith ever flown
- Microthrusters replacing reaction wheels for fine pointing
 - Successfully flight qualified as part of LISA Pathfinder
- ultra-low noise near-infrared detectors

Image Credit: Keith Warfield, HabEx team

Possible Technology Path to Imaging Exo-Earth

Starshade Technologies Being Advanced to TRL 5

Starlight Suppression

Suppressing scattered light off petal edges from off-axis Sunlight

Maintaining lateral offset requirement between the spacecraft

Deployment Accuracy and Shape Stability

Fabricating the petals to high accuracy

Positioning the petals to high accuracy, blocking on-axis starlight, maintaining overall shape on a highly stable structure

<u>Dependent on scale:</u> deployment architecture, petal manufacture
<u>Less dependent on scale:</u> optical modelling, formation flying sensing, edge scatter

See the Starshade Session (Thursday 8 am) and In-Space Assembly Session (Monday 3:40pm)

Towards an exo-Earth imaging and characterization mission

2010 Decadal Survey

APD Implementation Plan (2012, 2014, 2016)

NASA APD 30 year vision (2013)

ExEP Technology Plan Appendix (2017)

- STDT final reports (early 2019)
- 2020 Decadal Survey final report (December 2020)
 - will set the nation's science priorities, including recommendations for NASA astrophysics missions

Acknowledgements

This work was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration

© Copyright California Institute of Technology Government sponsorship acknowledged

